
Algorithms and Programming I

Lecture6

Heap Sort

Heaps

• A heap can be seen as a complete binary tree:

• What makes a binary tree complete?

• Is the example above complete?

16

14 10

8 7 9 3

2 4 1

Heaps

• A heap can be seen as a complete binary tree:

• “nearly complete” binary trees; can think of unfilled slots as null pointers

16

14 10

8 7 9 3

2 4 1 1 1 111

Heaps

• In practice, heaps are usually implemented as arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

Heaps

• To represent a complete binary tree as an array:
• The root node is A[1]

• Node i is A[i]

• The parent of node i is A[i/2] (note: integer divide)

• The left child of node i is A[2i]

• The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

Referencing Heap Elements

• So…
Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

The Heap Property

• Heaps also satisfy the heap property:

A[Parent(i)] A[i] for all nodes i > 1
• In other words, the value of a node is at most the value of its parent

• Where is the largest element in a heap stored?

Heap Height

• Definitions:
• The height of a node in the tree = the number of edges on the longest

downward path to a leaf

• The height of a tree = the height of its root

• What is the height of an n-element heap? Why?

• This is nice: basic heap operations take at most time proportional to
the height of the heap

Heap Operations: Heapify()

• Heapify(): maintain the heap property
• Given: a node i in the heap with children l and r

• Given: two subtrees rooted at l and r, assumed to be heaps

• Problem: The subtree rooted at i may violate the heap property (How?)

• Action: let the value of the parent node “float down” so subtree at i satisfies
the heap property
• What do you suppose will be the basic operation between i, l, and r?

Heap Operations: Heapify()

Heapify(A, i)

{

l = Left(i); r = Right(i);

if (l <= heap_size(A) && A[l] > A[i])

largest = l;

else

largest = i;

if (r <= heap_size(A) && A[r] > A[largest])

largest = r;

if (largest != i)

Swap(A, i, largest);

Heapify(A, largest);

}

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A =

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Analyzing Heapify(): Informal

• Aside from the recursive call, what is the running time of
Heapify()?

• How many times can Heapify() recursively call itself?

• What is the worst-case running time of Heapify() on a heap of
size n?

Analyzing Heapify(): Formal

• Fixing up relationships between i, l, and r takes (1) time

• If the heap at i has n elements, how many elements can the subtrees
at l or r have?
• Draw it

• Answer: 2n/3 (worst case: bottom row 1/2 full)

• So time taken by Heapify() is given by

T(n) T(2n/3) + (1)

Analyzing Heapify(): Formal

• So we have

T(n) T(2n/3) + (1)

• By case 2 of the Master Theorem,

T(n) = O(lg n)

• Thus, Heapify() takes logarithmic time

Heap Operations: BuildHeap()

• We can build a heap in a bottom-up manner by running Heapify()
on successive subarrays
• Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

• So:
• Walk backwards through the array from n/2 to 1, calling Heapify() on each node.

• Order of processing guarantees that the children of node i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a

heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)

Heapify(A, i);

}

BuildHeap() Example

• Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

Analyzing BuildHeap()

• Each call to Heapify() takes O(lg n) time

• There are O(n) such calls (specifically, n/2)

• Thus the running time is O(n lg n)
• Is this a correct asymptotic upper bound?

• Is this an asymptotically tight bound?

• A tighter bound is O(n)
• How can this be? Is there a flaw in the above reasoning?

Analyzing BuildHeap(): Tight

• To Heapify() a subtree takes O(h) time where h is the height of
the subtree
• h = O(lg m), m = # nodes in subtree

• The height of most subtrees is small

• Fact: an n-element heap has at most n/2h+1 nodes of height h

• CLR 7.3 uses this fact to prove that BuildHeap() takes O(n) time

Heapsort

• Given BuildHeap(), an in-place sorting algorithm is easily
constructed:
• Maximum element is at A[1]

• Discard by swapping with element at A[n]
• Decrement heap_size[A]

• A[n] now contains correct value

• Restore heap property at A[1] by calling Heapify()

• Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)

{

BuildHeap(A);

for (i = length(A) downto 2)

{

Swap(A[1], A[i]);

heap_size(A) -= 1;

Heapify(A, 1);

}

}

Analyzing Heapsort

• The call to BuildHeap() takes O(n) time

• Each of the n - 1 calls to Heapify() takes O(lg n) time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)

Priority Queues

• Heapsort is a nice algorithm, but in practice Quicksort (coming up)
usually wins

• But the heap data structure is incredibly useful for implementing
priority queues
• A data structure for maintaining a set S of elements, each with an associated

value or key

• Supports the operations Insert(), Maximum(), and ExtractMax()

• What might a priority queue be useful for?

Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with the maximum key

• ExtractMax(S) removes and returns the element of S with the
maximum key

• How could we implement these operations using a heap?

