
Algorithms and Programming I

Lecture6

Heap Sort



Heaps

• A heap can be seen as a complete binary tree:

• What makes a binary tree complete?  

• Is the example above complete?
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Heaps

• A heap can be seen as a complete binary tree:

• “nearly complete” binary trees; can think of unfilled slots as null pointers
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Heaps

• In practice, heaps are usually implemented as arrays:
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Heaps

• To represent a complete binary tree as an array: 
• The root node is A[1]

• Node i is A[i]

• The parent of node i is A[i/2] (note: integer divide)

• The left child of node i is A[2i]

• The right child of node i is A[2i + 1]
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Referencing Heap Elements

• So…
Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }



The Heap Property

• Heaps also satisfy the heap property:

A[Parent(i)]  A[i] for all nodes i > 1
• In other words, the value of a node is at most the value of its parent

• Where is the largest element in a heap stored?



Heap Height

• Definitions:
• The height of a node in the tree = the number of edges on the longest 

downward path to a leaf 

• The height of a tree = the height of its root

• What is the height of an n-element heap? Why?

• This is nice: basic heap operations take at most time proportional to 
the height of the heap



Heap Operations: Heapify()

• Heapify(): maintain the heap property
• Given: a node i in the heap with children l and r

• Given: two subtrees rooted at l and r, assumed to be heaps

• Problem: The subtree rooted at i may violate the heap property (How?)

• Action: let the value of the parent node “float down” so subtree at i satisfies 
the heap property 
• What do you suppose will be the basic operation between i, l, and r?



Heap Operations: Heapify()

Heapify(A, i)

{ 

l = Left(i); r = Right(i);

if (l <= heap_size(A) && A[l] > A[i]) 

largest = l;

else

largest = i;

if (r <= heap_size(A) && A[r] > A[largest])

largest = r;

if (largest != i) 

Swap(A, i, largest);

Heapify(A, largest);

}



Heapify() Example
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Heapify() Example
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Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14



Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =



Analyzing Heapify(): Informal

• Aside from the recursive call, what is the running time of 
Heapify()?

• How many times can Heapify() recursively call itself?

• What is the worst-case running time of Heapify() on a heap of 
size n?



Analyzing Heapify(): Formal

• Fixing up relationships between i, l, and r takes (1) time

• If the heap at i has n elements, how many elements can the subtrees 
at l or r have? 
• Draw it

• Answer: 2n/3 (worst case: bottom row 1/2 full)

• So time taken by Heapify() is given by

T(n)  T(2n/3) + (1) 



Analyzing Heapify(): Formal

• So we have 

T(n)  T(2n/3) + (1) 

• By case 2 of the Master Theorem,

T(n) = O(lg n)

• Thus, Heapify() takes logarithmic time



Heap Operations: BuildHeap()

• We can build a heap in a bottom-up manner by running Heapify()
on successive subarrays
• Fact: for array of length n, all elements in range 

A[n/2 + 1 .. n] are heaps (Why?)

• So: 
• Walk backwards through the array from n/2 to 1, calling Heapify() on each node.

• Order of processing guarantees that the children of node i are heaps when i is processed



BuildHeap()

// given an unsorted array A, make A a 

heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)

Heapify(A, i);

}



BuildHeap() Example

• Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}
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Analyzing BuildHeap()

• Each call to Heapify() takes O(lg n) time

• There are O(n) such calls (specifically, n/2)

• Thus the running time is O(n lg n)
• Is this a correct asymptotic upper bound?

• Is this an asymptotically tight bound?

• A tighter bound is O(n) 
• How can this be?  Is there a flaw in the above reasoning?



Analyzing BuildHeap(): Tight

• To Heapify() a subtree takes O(h) time where h is the height of 
the subtree
• h = O(lg m), m = # nodes in subtree

• The height of most subtrees is small

• Fact: an n-element heap has at most n/2h+1 nodes of height h

• CLR 7.3 uses this fact to prove that BuildHeap() takes O(n) time 



Heapsort

• Given BuildHeap(),  an in-place sorting algorithm is easily 
constructed:
• Maximum element is at A[1]

• Discard by swapping with element at A[n]
• Decrement heap_size[A]

• A[n] now contains correct value

• Restore heap property at A[1] by calling Heapify()

• Repeat, always swapping A[1] for A[heap_size(A)]



Heapsort

Heapsort(A)

{

BuildHeap(A);

for (i = length(A) downto 2)

{

Swap(A[1], A[i]);

heap_size(A) -= 1;

Heapify(A, 1);

}

}



Analyzing Heapsort

• The call to BuildHeap() takes O(n) time 

• Each of the n - 1 calls to Heapify() takes O(lg n) time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)



Priority Queues

• Heapsort is a nice algorithm, but in practice Quicksort (coming up) 
usually wins

• But the heap data structure is incredibly useful for implementing 
priority queues
• A data structure for maintaining a set S of elements, each with an associated 

value or key

• Supports the operations Insert(), Maximum(), and ExtractMax()

• What might a priority queue be useful for?



Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with the maximum key

• ExtractMax(S) removes and returns the element of S with the 
maximum key

• How could we implement these operations using a heap?


